Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Database
Language
Document Type
Year range
1.
IEEE Open J Eng Med Biol ; 3: 167-170, 2022.
Article in English | MEDLINE | ID: covidwho-2283695

ABSTRACT

A key aspect of the National Institutes of Health (NIH) funded Rapid Acceleration of Diagnostics (RADx) Tech program was an active Clinical Studies Core including Committees with unique expertise to facilitate the development and implementation of studies to test novel diagnostic devices for Covid-19. The Ethics and Human Subjects Oversight Team (EHSO) was tasked to provide ethics and regulatory expertise to stakeholders in the RADx Tech effort. The EHSO developed a set of Ethical Principles to guide the overall effort and provided consultation on a wide range of ethical and regulatory concerns. Having access to a pool of experts with ethical and regulatory knowledge who met weekly to tackle issues of importance to the investigators was critical to the overall success of the project.

2.
BMC Public Health ; 22(1): 1235, 2022 06 21.
Article in English | MEDLINE | ID: covidwho-1962794

ABSTRACT

BACKGROUND: Among those at highest risk for COVID-19 exposure is the large population of frontline essential workers in occupations such food service, retail, personal care, and in-home health services, among whom Black and Latino/Hispanic persons are over-represented. For those not vaccinated and at risk for exposure to COVID-19, including frontline essential workers, regular (approximately weekly) COVID-19 testing is recommended. However, Black and Latino/Hispanic frontline essential workers in these occupations experience serious impediments to COVID-19 testing at individual/attitudinal- (e.g., lack of knowledge of guidelines), social- (e.g., social norms), and structural-levels of influence (e.g., poor access), and rates of testing for COVID-19 are insufficient. METHODS/DESIGN: The proposed community-engaged study uses the multiphase optimization strategy (MOST) framework and an efficient factorial design to test four candidate behavioral intervention components informed by an integrated conceptual model that combines critical race theory, harm reduction, and self-determination theory. They are A) motivational interview counseling, B) text messaging grounded in behavioral economics, C) peer education, and D) access to testing (via navigation to an appointment vs. a self-test kit). All participants receive health education on COVID-19. The specific aims are to: identify which components contribute meaningfully to improvement in the primary outcome, COVID-19 testing confirmed with documentary evidence, with the most effective combination of components comprising an "optimized" intervention that strategically balances effectiveness against affordability, scalability, and efficiency (Aim 1); identify mediators and moderators of the effects of components (Aim 2); and use a mixed-methods approach to explore relationships among COVID-19 testing and vaccination (Aim 3). Participants will be N = 448 Black and Latino/Hispanic frontline essential workers not tested for COVID-19 in the past six months and not fully vaccinated for COVID-19, randomly assigned to one of 16 intervention conditions, and assessed at 6- and 12-weeks post-baseline. Last, N = 50 participants will engage in qualitative in-depth interviews. DISCUSSION: This optimization trial is designed to yield an effective, affordable, and efficient behavioral intervention that can be rapidly scaled in community settings. Further, it will advance the literature on intervention approaches for social inequities such as those evident in the COVID-19 pandemic. TRIAL REGISTRATION: ClinicalTrials.gov: NCT05139927 ; Registered on 11/29/2021. Protocol version 1.0. May 2, 2022, Version 1.0.


Subject(s)
COVID-19 Testing , COVID-19 , Black People , COVID-19/diagnosis , Hispanic or Latino , Humans , Pandemics/prevention & control , Randomized Controlled Trials as Topic
3.
IEEE Open J Eng Med Biol ; 2: 158-162, 2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1599077

ABSTRACT

This paper explores how the approach, process, and learnings of the RADxSM Tech Deployment Core in its support of manufacturing, deployment, and implementation of medical technologies is creating a replicable model for the future. Initially, the key construct of the RADx Tech Deployment Core was helping companies manufacture, commercialize, and develop a digital infrastructure for the purpose of SARS-CoV-2 testing and reporting. However, the team and RADx Tech leadership soon realized that the larger infrastructure to deploy testing in non-clinical environments was nonexistent and that wrap-around services were required to build the necessary bridge between manufacturing and end users. Furthermore, the unique communities that required testing (e.g., manufacturing plants, transportation hubs, K-12 schools, etc.) had different infrastructure requirements and outsized needs for education and support around testing plan implementation. The Deployment Core, therefore, quickly scaled a team to help to complete the picture and provide guidance to end users and ultimately help shape public policy around a useful data model.

4.
IEEE Open J Eng Med Biol ; 2: 125-130, 2021.
Article in English | MEDLINE | ID: covidwho-1598650

ABSTRACT

RADxSM Tech's mission is to rapidly accelerate deployment of SARS-CoV-2 tests and could not utilize typical grant application and review processes that can run 4 to 6 months. Instead, RADx Tech leveraged methodologies developed by CIMIT and utilized by POCTRN as described further in this special issue. RADx Tech uses a multi-stage review with two review panels, a Viability Panel and a Steering Panel, that are supported by subject matter experts and a Deep Dive team. Members of the panels have extensive commercialization and business experience in addition to scientific and technical knowledge. The Viability Panel is responsible for assessing whether the proposal is a good fit with the RADx Tech Program and whether it should be recommended to move into a Deep Dive. Less detailed information is requested in the application than a typical SBIR application since the application is refined and details added during the Deep Dive. The Steering Panel reviews the results from the Deep Dive and decides whether to recommend further funding. Everyone on the Viability Panel and Steering Panel reviews every application, thereby providing consistency and context for the reviewers. Utilization of an "assess, improve, and then select" process with review panels comprised of highly experienced review panel members has resulted in improved timing, efficiency, and effectiveness of reviews and has the potential to be extensible beyond RADx Tech.

5.
IEEE Open J Eng Med Biol ; 2: 142-151, 2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1596389

ABSTRACT

Faced with the COVID-19 pandemic, the US system for developing and testing technologies was challenged in unparalleled ways. This article describes the multi-institutional, transdisciplinary team of the "RADxSM Tech Test Verification Core" and its role in expediting evaluations of COVID-19 testing devices. Expertise related to aspects of diagnostic testing was coordinated to evaluate testing devices with the goal of significantly expanding the ability to mass screen Americans to preserve lives and facilitate the safe return to work and school. Focal points included: laboratory and clinical device evaluation of the limit of viral detection, sensitivity, and specificity of devices in controlled and community settings; regulatory expertise to provide focused attention to barriers to device approval and distribution; usability testing from the perspective of patients and those using the tests to identify and overcome device limitations, and engineering assessment to evaluate robustness of design including human factors, manufacturability, and scalability.

6.
IEEE Open J Eng Med Biol ; 2: 131-137, 2021.
Article in English | MEDLINE | ID: covidwho-1592794

ABSTRACT

The RADxSM Tech program was a unique funding and support mechanism to accelerate the market introduction of diagnostic tests for SARS-CoV-2, the virus that causes COVID-19. In addition to providing funding, the RADx Tech program provided unprecedented levels of non- monetary support. Applications were evaluated using a deep dive process which involved a 1- to 2-week intensive collaboration between the applicant and a team of experts from RADx Tech. The result of this deep dive was a very comprehensive understanding of the potential and risks associated with the proposed work, which was far beyond what can typically be understood in a written grant application. This detail allowed the deep dive team to provide a better-informed recommendation on how to proceed. In some instances, the recommendation was made to not fund the project; in other cases, the recommendation was made to provide the applicant with more funding or support to help maximize their probability of success. After the deep dive, the project moved to a Work Package 1 (WP1) phase that focused on further de-risking. The same RADx Tech team that conducted the deep dive also worked with the applicant through the WP1 phase of the program. This allowed for joint responsibility of the work with the common goal of rapid, successful product introduction.

7.
IEEE Open J Eng Med Biol ; 2: 119-124, 2021.
Article in English | MEDLINE | ID: covidwho-1592471

ABSTRACT

The RADxSM Tech initiative required a massive mobilization of the biomedical community. It was chartered with the extremely ambitious goal of rapidly developing and deploying innovative tests to detect people infected with the SARS-CoV-2 virus. It needed to do so at a scale and with urgency to get the country back to daily activities such as school and work as soon as possible. It required forming and supporting a diversity of teams with members from around the country and beyond. These teams collaborated in complex workflows that needed to be carefully monitored and tracked. This paper describes the key elements of the secure, web-based infrastructure that was configured to enable the efficient and effective operation of RADx Tech's key processes and address its unique and urgent challenges. One such challenge was to manage the flow of applications through a multi-stage, interactive selection process (using the CoLab platform) and another was to support and facilitate the progress of projects selected for support and funding through an accelerated commercialization program (using the GAITS platform).

SELECTION OF CITATIONS
SEARCH DETAIL